CALCULATION OF HEAT-TRANSFER COEFFICIENTS
USING A TWO-ZONE MODEL OF TURBULENT FLOW

V. A. Men'shchikov UDC 536,244

A model for the description of radial temperature profiles in a gas flow is proposed and
used in the calculation of heat-transfer coefficients.

In calculating the heat transfer at the walls of a tube in which turbulent flow is occurring, the model
of the turbulent flow is of paramount importance. Many works have been devoted to the description of tur-
bulent flow [1-4], and there exist various models of the process, differing both in numerical values for the
same structure and also in the structure itself. Two-, three-, and even four-zone models of the turbulent
flow in a tube are known. The more complex models provide a more accurate description of the phenomenon,
but their use in practice is difficult.

We will use a two-zone flow model [1], comprising a boundary layer at the wall surface and a flow core
throughout the remaining space. In the boundary layer, heat and mass transfer occurs by molecular diffusion
and heat conduction. This model grossly simplifies the phenomenon, but, where satisfactory results are ob-
tained, its use is entirely justified.

To confirm its effectiveness, the chosen model will be used for the computer calculation of a temper-
ature profile and, from the results obtained and also experimental data, the heat-transfer coefficient will be
determined [5] and compared with results given by known formulas [6]. If the results coincide, the use of the
chosen model can be regarded as acceptable.

The temperature profile is calculated by solving the equation
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with boundary conditions
for x=0 T = f(x),
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or
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or Ay

To determine A,, it is assumed that heat transfer occurs as a result of molecular motion in the boundary
layer, but additionally by radial diffusion in the flow core. Then

for Ry (1—nN<KA M=y (3)
for Ry (1—r)>A A =24, C,pe. @

Equation (1) and the boundary conditions in Eq. (2) are replaced by finite-difference equations and solved
over a nonuniform grid [7] using a Minsk-2 computer.

The dependence of the linear flow velocity uy on the tube radius is taken in the form

u, :uc(l——r)‘f’”. (5)

Scientific-Research Institute of Synthetic Alcohols and Organic Products, Moscow. Translated from In-
zhenerno~-Fizicheskii Zhurnal, Vol.31, No.1, pp.93-96, July, 1976. Original article submitted August 21,
1975.

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part
of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $7.50.

815



o 1 Tw -7 T 0
' | )(QX/
2000 Z SL . va-7é xxb/xc’
-4
x x —f X 1
°o—2 5 l ."0/ l
0 T
x —f
x :
. |7
1 ¢ - i
0 ! F\ﬁLx\_o\_% . | ;
g oo 20k 0 0 20 w0 W ok “o a4 B /Ry
Fig.1 Fig.2 Fig.3

Fig.1. Comparison of heat-transfer coefficients calculated from the radial temperature profile (abscissa) and
from Eq. (10) (ordinate). o, W/m?-°C.

Fig.2. Dependence of heat-transfer coefficient on the length of the heated section: 1) calculated from the radi-
al temperature profile; 2) experimental [10]. &1, =dL/aw.

Fig. 3. Dependence of dimensionless temperature on dimensionless radius Re = 10%, Pr =0.7, L =3.6 m, Ry=
0.062 m, q = 46,500 W/m? (40,000 kcal/m?-h), Apr = 0.1396 W/m-°C (0.12 kcal/m?< h+°C), = 1.785 m/sec, n =
7); 1) calculated from radial temperature profile; 2) experimental [11].

The quantity n, which is a function of the Reynolds number, is taken from the data of [8]. The thickness
of the boundary layer A is given by [1]
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The coefficient of resistance of turbulent flow in the circular tube is calculated from the formula [1]
& = 0.0032 + 0.221 Re—0-237, (7)
In accordance with the method of [9]
1
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As in experimental investigations [5], the heat-transfer coefficient is determined from the relation
P E— (9
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Results for the heat-transfer coefficient calculated from the temperature profile according to the known
formula [6]

o = 0.023Re?8 Pro-1 (10)

are shown in Fig.1. The parameters vary over the following ranges: u = 2.6-260 m/sec, Ry = 0.006-0.062 m,
AM = 0.1396 W/m-°C (0.12 kcal/m?+ h.°C), Re=10‘-10°, Pr =1.02.

From Fig.1 it follows that the values calculated by different methods are in good agreement.

As is known, the heat-transfer coefficient is higher on the initial portion of the tube than that given by
Eg. (10), which is valid for L. = 100R,. From the radial temperature profile obtained by computer, we cal-
culated the heat-transfer coefficient on the initial portibn of the tube (1=16.8 m/sec; Ry=0.062 m; n=8,35;
Re=1.8+10% Pr=1.02) and compared it with the data of [10]. The results, given in Fig. 2, show that the
agreement between our data and those of [10] is good for 1L/2R, > 5. The discrepancy of approximately 10%
that appears for L/2R,< 2 may be explained by the reduction in accuracy of the experiment when the heated
portion of the tube is small,

Comparison of the calculated temperature profile in a flow of air with an experimental profile [11] (Fig.
3) shows good agreement,

NOTATION

r, dimensionless radius; x, dimensionless length; uy, flow velocity as a function of the radius; A,
thermal conductivity as a function of the radius, Ap;, molecular thermal conductivity; Cp, specific heat; p,
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density; Ry, tube radius; T, temperature; q, specific heat flow on tube surface; uc, flow velocity on tube axis;
¢, hydraulic resistance coefficient; A, boundary-layer thickness; &, turbulent-diffusion coefficient; u, mean
flow velocity; o, heat-transfer coefficient; Re, Reynolds number; Pr, Prandtl number; L, tube length; Tms
mean flow temperature; Ty, wall temperature.
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EFFECT OF ABSORPTION-TIME DIFFERENCES
ON GAS FLOW IN CAPILLARIES

V. V. Levdanskii UDC 532.66:533.6.011

The effect of differences in absorption time at a capillary surface on the free~-molecular gas
flow is analyzed, taking into account surface diffusion.

In the analysis of gas flow in capillaries, it is often necessary to take into account the specific proper-
ties of the interaction of gas molecules with the capillary wall. On contact of the gas with the solid surface,
physical adsorption and surface diffusion of the adsorbed molecules usually occur [1]. The surface-diffusion
process may lead to a selective inleakage of a gas-mixture component through the porous body [2]. In this
context, it is of interest to carry out a kinetic investigation of the gas flow in a single capillary.

We consider free-molecular gas flow in a microcapillary of finite length., We assume that the diffusional-
transfer potential ¢ = P/VT is the same at both ends of the capillary (.e., in the absence of surface diffusion
there is no resultant molecular flux in the system). It is known that molecules incident on the surface of the
solid usually remain on it for an adsorption time T, the magnitude of which, generally speaking, may vary
over the length of the capillary. Apart from nonisothermal conditions, the change in 7 may be caused by the
incidence of various kinds of radiation on the surface [3]. ’

To elucidate the effect of differences in adsorption time, we consider the following model problem. It is
assumed that the adsorption times on the inner capillary surface (r,) and its ends (ry and 73) may differ and that
Ty = Ty = Ty. In addition, it is assumed that the degree of filling of the surface by adsorbed molecules is suffi-
ciently low for Henry's law to be applied. Then the difference in T may create conditions for the appearance of
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